Unramified extensions of some cyclic quartic fields
نویسندگان
چکیده
منابع مشابه
Unramified Quaternion Extensions of Quadratic Number Fields
The first mathematician who studied quaternion extensions (H8-extensions for short) was Dedekind [6]; he gave Q( √ (2 + √ 2)(3 + √ 6) ) as an example. The question whether given quadratic or biquadratic number fields can be embedded in a quaternion extension was extensively studied by Rosenblüth [32], Reichardt [31], Witt [36], and Damey and Martinet [5]; see Ledet [19] and the surveys [15] and...
متن کاملUnramified Alternating Extensions of Quadratic Fields
We exhibit, for each n ≥ 5, infinitely many quadratic number fields admitting unramified degree n extensions with prescribed signature whose normal closures have Galois group An. This generalizes a result of Uchida and Yamamoto, which did not include the ability to restrict the signature, and a result of Yamamura, which was the case n = 5. It is a folk conjecture that for n ≥ 5, all but finitel...
متن کاملUNRAMIFIED EXTENSIONS AND GEOMETRIC Zp-EXTENSIONS OF GLOBAL FUNCTION FIELDS
We study on finite unramified extensions of global function fields (function fields of one valuable over a finite field). We show two results. One is an extension of Perret’s result about the ideal class group problem. Another is a construction of a geometric Zp-extension which has a certain property.
متن کاملOn the kernel of the norm in some unramified number fields extensions
dpH (G,EL) = dpH (G,Z/pZ)− dpH (G,Z/pZ) + dpH (G,Z/pZ). It is so crucial to find an upperbound for the p-rank dpH (G,EL) when Cl(L) is trivial. In this paper, we prove results about this rank in some special cases. More precisely, we compute this p-rank when L/K is an abelian unramified (also at infinity) p-extension whose Galois group can be generated by two elements. We also exhibit an explic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Boletim da Sociedade Paranaense de Matemática
سال: 2018
ISSN: 2175-1188,0037-8712
DOI: 10.5269/bspm.v36i1.31299